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Abstract. Dataset search aims to find datasets that are relevant to
a keyword query. Existing dataset search engines rely on conventional
sparse retrieval models (e.g., BM25). Dense models (e.g., BERT-based)
remain under-investigated for two reasons: the limited availability of
labeled data for fine-tuning such a deep neural model, and its limited
input capacity relative to the large size of a dataset. To fill the gap,
in this paper, we study dense re-ranking for RDF dataset search. Our
re-ranking model encodes the metadata of RDF datasets and also their
actual RDF data—by extracting a small yet representative subset of data
to accommodate large datasets. To address the insufficiency of training
data, we adopt a coarse-to-fine tuning strategy where we warm up the
model with weak supervision from a large set of automatically generated
queries and relevance labels. Experiments on the ACORDAR test collec-
tion demonstrate the effectiveness of our approach, which considerably
improves the retrieval accuracy of existing sparse models.
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1 Introduction

As data plays an increasingly crucial role in many domains, the capability to
search for relevant datasets has become critical [5]. To satisfy this need, dataset
search engines such as Google Dataset Search [2,3] have emerged. The Semantic
Web community is particularly interested in RDF dataset search, and has also
developed a few such solutions [6,24,30] and made benchmarking efforts [18].
Motivation. Existing RDF dataset search solutions employ conventional sparse
models (e.g., BM25 [26]) to retrieve lexically relevant datasets, which cannot
capture the semantic relationships between query and dataset. By contrast,
building on the semantic matching capability of pre-trained language models
(e.g., BERT [10]) to understand text, dense ranking models (e.g., DPR [12])
have achieved remarkable performance in document retrieval [33]. It inspires us
to study dense models for RDF dataset search and investigate their effectiveness.
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Challenges. Applying dense models to RDF dataset search is a nontrivial task.
Indeed, we identify the following two challenges. Note that these difficulties also
face dataset search in general, not limited to RDF dataset search.

– Unlike documents, (RDF) datasets are structured and commonly very large,
e.g., containing thousands or millions of RDF triples. It remains unclear how
to effectively feed such a huge amount of data into a dense ranking model
which typically allows a maximum input length of only 512 tokens, and we
should not simply drop the data but rely solely on the metadata of a dataset
since this has been proven to hurt accuracy [6,18].

– Unlike document retrieval which is an established research task with many
large test collections, (RDF) dataset search is relatively new and is now
accompanied by only a few relatively small test collections [13,18]. The limited
labeled data in these test collections is insufficient for tuning a dense ranking
model having at least hundreds of millions of trainable parameters.

Our Work. We propose to study dense ranking models for RDF dataset search
and address the above two challenges. Our approach adopts a popular retrieval-
then-reranking architecture, and we use dense models in the re-ranking step. To
feed the metadata and content of an RDF dataset into the model, we concatenate
metadata fields as well as a small subset of RDF triples extracted from the data as
a representative data sample. To tune the model, besides the limited labeled data
provided by existing test collections, we adopt a coarse-to-fine tuning strategy
and we propose two methods for automatically generating a large amount of
possibly noisy labeled data to weakly supervise the model in the preliminary
coarse-tuning phase. We refer to our approach as DR2, short for Dense Rdf
Dataset Re-ranking. To summarize, our contributions include

– the first research attempt to adapt dense ranking models to RDF dataset
search, by encoding representative RDF triples extracted from large datasets,

– two methods for automatically generating labeled data to coarse-tune the
model, one based on distant supervision and the other based on self-training,

– experiments on a public test collection, empirically comparing a variety of
triple extraction methods, dense ranking models, and tuning strategies.

Outline. The remainder of the paper is organized as follows. Section 2 introduces
our retrieval-then-reranking approach for RDF dataset search. Section 3 details
our coarse-to-fine tuning strategy. Section 4 presents evaluation results. Section 5
discusses related work. Section 6 concludes the paper with future work.

2 Dense Re-Ranking for RDF Dataset Search

In this section, we describe our retrieval-then-reranking approach for RDF
dataset search. We begin with an overview of the approach. Then we detail
its two major steps: compact document representation and dense re-ranking.
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Fig. 1. Our retrieval-then-reranking approach for RDF dataset search.

2.1 Overview

Figure 1 presents an overview of our approach for RDF dataset search. We
follow best practice [17] to adopt a retrieval-then-reranking design. Specifically,
given a keyword query q and a collection D of RDF datasets, the first step is to
perform a normal retrieval by using a conventional off-the-shelf method for RDF
dataset search to retrieve k top-ranked RDF datasets from D that are the most
relevant to q, denoted by Ds = 〈d1, . . . , dk〉. For each retrieved RDF dataset
di ∈ Ds, the second step is to construct its compact document representation to
be fed into the downstream dense re-ranking model. We construct two pseudo
documents in this step: pmi representing the metadata of di, and pci representing
the content of di, i.e., the actual RDF data in di. The last step is to employ a
dense ranking model to re-rank each RDF dataset di ∈ Ds based on the relevance
of pmi and pci to q, and output the re-ranked results denoted by Dr = 〈d′

1, . . . , d
′
k〉.

The retrieval model in the first step is out of our research focus. In the
experiments we will use existing implementations provided in the literature [18].
In the following we will focus on the second and the third steps.

2.2 Compact Document Representation

An RDF dataset contains RDF data and typically has metadata description.
Both metadata and RDF data are structured. They need to be linearized into
pseudo documents so that they can be processed by the downstream dense re-
ranking model. We call them compact documents because, relatively to the pos-
sibly large size of an RDF dataset (e.g., millions of RDF triples), the length of
such a document has to be bounded to fit the maximum input length of the
downstream dense model which is usually a small number (e.g., 512 tokens).

Metadata Document. For a retrieved RDF dataset di ∈ Ds, we construct its
metadata document pmi , i.e., a pseudo document representing its metadata.

Specifically, recall that metadata commonly consists of a set of fields. Follow-
ing [18], we choose four fields that should contain human-readable information
and hence are used in the computation of query relevance: title, description,
tags, and author. The values of these fields are concatenated into pmi as illus-
trated in Fig. 2, where [CLS] and [SEP] are standard separating tokens used
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Fig. 2. Compact document representation for an RDF dataset.

in BERT-based models [10]. They can be replaced by their counterparts when
other families of language models are used as a substitute for BERT.

Metadata is usually short enough to fit the maximum input length of a dense
model. If exceeded, the metadata document will be truncated to the maximum
input length in a normal way, i.e., its end will be cut off.

Data Document. For a retrieved RDF dataset di ∈ Ds, we construct its data
document pci , i.e., a pseudo document representing its RDF data content.

Specifically, recall that RDF data consists of a set of RDF triples. An RDF
dataset may easily contain too many triples to fit the maximum input length of
a dense model. Indeed, a median of 2k RDF triples was observed in the liter-
ature [18]. Instead of performing arbitrary truncation, we want to identify and
keep the most important information in RDF data by extracting a representa-
tive subset of RDF triples. This resembles the research objective of RDF dataset
snippet generation [29]. Therefore, we choose and implement two state-of-the-art
solutions to this research problem: IlluSnip [8,19] and PCSG [28]. In a nutshell,
IlluSnip computes a ranking of the RDF triples in an RDF dataset such that
the top-ranked triples cover the most frequent classes, properties, and entities
in the data. PCSG relies on entity description pattern (EDP) which is a set of
classes and properties used to describe an entity in an RDF dataset. It selects a
smallest number of subsets of RDF triples—each subset covering an EDP—such
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that the selected subsets of triples cover all the EDPs in the data. We further
rank these subsets by the frequency of covered EDP.

From a possibly large RDF dataset di, subject to the maximum input length
of a dense model, we extract the largest possible number of top-ranked RDF
triples returned by IlluSnip, or the largest possible number of top-ranked subsets
of triples returned by PCSG, depending on which algorithm is used. We will
compare IlluSnip and PCSG in the experiments. We concatenate the human-
readable forms of the subject, predicate, and object in each extracted RDF
triple into pci as illustrated in Fig. 2, separated by [CLS] and [SEP]. The human-
readable form of an IRI or blank node refers to its rdfs:label (if available) or
local name, and the human-readable form of a literal refers to its lexical form.

Moreover, a single RDF triple may occasionally be very long, e.g., containing
a long literal. We need to find a trade-off between the number of extracted
RDF triples and the maximum allowed length of a triple. Our implementation
empirically truncates each RDF triple to at most 45 tokens because, by sampling
RDF datasets used the literature [18], we find that more than 99% of the sampled
RDF triples contain at most 45 tokens, i.e., truncation would be very rare in our
setting so that the completeness of most triples could be guaranteed.

2.3 Dense Re-Ranking

Given a keyword query q and a set of retrieved k top-ranked RDF datasets Ds,
we employ a dense ranking model to re-rank each dataset di ∈ Ds based on the
relevance of its metadata document pmi and data document pci to q.

Specifically, we consider using dense models for re-ranking because, com-
pared with normal sparse models which rely on lexical features for measuring
query relevance, dense models are expected to extract semantic features from
queries and documents to more accurately compute their relevance. We choose
and adapt two dense ranking models, DPR [12] and ColBERT [14], because
they have been widely used in information retrieval research. In a nutshell, DPR
and ColBERT both based on BERT [10] perform sentence-level and token-level
semantic matching, respectively. We will compare them in the experiments. They
can also be substituted by other dense ranking models [33].

Let DenseRel(·, ·) be a dense ranking model, i.e., DPR or ColBERT, which
computes the relevance of a document to a keyword query. We calculate the re-
ranking score of an RDF dataset di by computing the relevance of its metadata
document pmi to q and the relevance of its data document pci to q, and then take
their maximum value:

Score(di) = max{DenseRel(q, pmi ), DenseRel(q, pci )} . (1)

3 Coarse Tuning with Weak Supervision

Dense ranking models are supervised. Although they are based on pre-trained
language models such as BERT, it is still expected to fine-tune them with task-
specific training data to achieve better performance. However, RDF dataset
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search is a relatively new research problem. The labeled data provided by exist-
ing test collections such as [18] may be sufficient for testing but not sufficient for
fine-tuning a deep neural model. Therefore, we propose to warm up our dense
re-ranking model with weak supervision, i.e., with a large set of automatically
generated labeled data which, however, possibly contains some noise.

Fig. 3. Our coarse-to-fine strategy for tuning our dense re-ranking model.

In this section, we begin with an overview of our coarse-to-fine tuning strat-
egy. Then we detail two methods for generating labeled data for coarse-tuning:
one based on distant supervision, and the other based on self-training.

3.1 Overview

Figure 3 presents an overview of our strategy for tuning our dense re-ranking
model. We adopt a coarse-to-fine design which has been popularly used in other
tasks but not yet in RDF dataset search. Specifically, given a raw (i.e., untuned)
model, in the first step, we employ a large set of automatically generated labeled
data to tune the model. Such labeled data is generated by two methods: Lds gen-
erated by distant supervision, and Lst generated by self-training. They are auto-
matically generated and hence may contain noise, i.e., incorrect labels. Therefore,
we refer to this step as coarse-tuning. In the second step, we employ the labeled
data Ltc provided by the training and validation sets of a test collection for RDF
dataset search to fine-tune the model in a normal way.

Each L ∈ {Lds, Lst, Ltc} is a set of query-document-label triples {〈q, pi, l〉}
where q is a keyword query, pi is a pseudo document, i.e., the metadata docu-
ment pmi or the data document pci constructed for an RDF dataset di according
to Sect. 2.2, and l is a Boolean label indicating whether di is relevant to q. Note
that for Lds and Lst, we will only focus on the generation of positive labels,
i.e., 〈q, pi, true〉. It is then common practice to automatically generate nega-
tive labels by randomly pairing keyword queries with pseudo documents. For
example, DPR [12] is associated with such a built-in generator called in-batch
negatives.
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3.2 Coarse-Tuning Based on Distant Supervision

Our first method for generating labeled data is inspired by the concept of distant
supervision, which was originally applied to the task of relation extraction [22].
The idea is that by treating the title of a dataset di as a query q, the metadata
document pci for di should be relevant to q. Therefore, although the availability
of labeled data for training RDF dataset search is limited, it is relatively easy
to collect metadata for a large number of datasets from the Web, and they are
not even restricted to RDF datasets since only their metadata will be used. In
this way, a large number of labeled data can be automatically generated.

Fig. 4. An example of generating labeled data by distant supervision.

Specifically, with the metadata of each collected dataset di, as illustrated in
Fig. 4, we take di’s title as a query q, and construct di’s metadata document pmi
according to Sect. 2.2. In particular, we mask the title field in pmi because oth-
erwise the relevance of pmi to q would be too explicit to be useful when being
used in tuning. We mask the title field by replacing each token in this field with
[MASK] which is a standard masking token used in BERT-based models [10].
Finally, we add the triple 〈q, pmi , true〉 to Lds.

To use Lds to coarse-tune our dense re-ranking model, we randomly split Lds

into 90% for training and 10% for validation.

3.3 Coarse-Tuning Based on Self-training

Our second method for generating labeled data adopts a self-training design.
The idea is to exploit both the labeled and unlabeled data in a test collection for
RDF dataset search, by training a document-to-query generator on the labeled
data and then applying it to generate a query q from the metadata document pmi
or the data document pci for each unlabeled RDF dataset di; these two documents
should be relevant to q. Since unlabeled data is often in large amounts in a test
collection, e.g., 80% of the RDF datasets in [18] are unlabeled (i.e., not involved
in any query-document-label triple in Ltc), a large number of labeled data can
be automatically generated in this way.

Specifically, recall that Ltc denotes the set of labeled data in the training and
validation sets of a test collection for RDF dataset search. Let Ltc/t/m, Ltc/v/m ⊆
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Ltc be the subsets of labeled data in the training and validation sets, respec-
tively, where query-document-label triples are about metadata documents. Let
Ltc/t/c, Ltc/v/c ⊆ Ltc be the subsets of labeled data in the training and validation
sets, respectively, where query-document-label triples are about data documents.
We separately train two document-to-query generators: Gm for metadata docu-
ments and Gc for data documents. We reduce document-to-query generation to
a text-to-text generation task. We train Gm by employing Ltc/t/m as the training
set and Ltc/v/m as the validation set to fine-tune a T5 model [25], which is a
pre-trained text-to-text model. Model selection based on the validation set relies
on the ROUGE score, i.e., the mean of ROUGE-1, ROUGE-2, and ROUGE-L,
which are standard metrics for evaluating text generation. Then we apply the
fine-tuned T5 model as Gm to the metadata document pmi constructed for each
unlabeled RDF dataset di in the test collection to generate a query q, as illus-
trated in Fig. 5, and add the triple 〈q, pmi , true〉 to Lst. Analogously, we train Gc

on Ltc/t/c and Ltc/v/c, and apply it to the data documents of unlabeled RDF
datasets to expand Lst.

Fig. 5. An example of generating labeled data by a document-to-query generator.

To use Lst to coarse-tune our dense re-ranking model, we use Lst as the
training set and use the original validation set Ltc/v/m ∪ Ltc/v/c in the test
collection as the validation set.

4 Evaluation

4.1 Test Collection

We conducted experiments on ACORDAR [18], the currently largest test collec-
tion for RDF dataset search, providing 493 queries and 10,671 labeled relevance
judgments over 31,589 RDF datasets. Following [18], we conducted five-fold
cross-validation using the official train-valid-test splits provided by ACORDAR.1

1 https://github.com/nju-websoft/ACORDAR.

https://github.com/nju-websoft/ACORDAR
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4.2 Labeled Data for Coarse-Tuning

We implemented the method for generating labeled data Lds based on distant
supervision described in Sect. 3.2 by collecting metadata of datasets from open
data portals (ODPs). Specifically, to collect metadata for as many datasets as
possible, inspired by [18], we found ODPs by looking up five large catalogues:
CKAN,2 DKAN,3 DataPortals.org,4 Open Data Portal Watch,5 and Socrata.6

We collected all the ODPs listed in these catalogues, and additionally took the
Linked Open Data Cloud7 into account as an ODP. We identified a total of
570 ODPs that were accessible at the time of experimentation. For each ODP,
we used its API to download the metadata for all the datasets registered in
the ODP. We successfully collected metadata for 704,370 datasets, but had to
remove 354 due to their empty titles. We constructed metadata documents for
the remaining 704,016 datasets to generate query-document-label triples as Lds.

We implemented the method for generating labeled data Lst based on self-
training described in Sect. 3.3 by exploiting the labeled and unlabeled data in
ACORDAR. Specifically, we trained document-to-query generators on the train-
ing and validation sets in ACORDAR, and applied them to the metadata and
data documents constructed for the 25,380 unlabeled RDF datasets in ACOR-
DAR to generate queries and form query-document-label triples in Lst.

4.3 Implementation Details

Our document-to-query generators were implemented based on the T5-Base
model.8 We searched batch size in {8, 16}, learning rate in {1e−6, 5e−6, 1e−5},
and trained 10 epochs. We used the Adam optimizer [15]. We ran T5 on an
NVIDIA GeForce RTX 3090 GPU with 24 GB memory.

For DPR and ColBERT in our dense re-ranking model, we used their open-
source code.910 For DPR, we trained 1 epoch in the coarse-tuning phase and
10 epochs in the fine-tuning phase, considering the different sizes of training
data for different phases. We searched batch size in {2, 4} and learning rate in
{1e−5, 2e−5}. For ColBERT, we followed [14] to train 1 epoch in each phase. We
searched batch size in {8, 16} and learning rate in {1e−6, 3e−6, 7e−6}. We used
the Adam optimizer. We ran DPR and ColBERT on eight NVIDIA Tesla V100
GPUs with 32 GB memory. Based on Faiss indexes,11 the mean re-ranking time
used by DPR and ColBERT for a query was 62 ms and 139 ms, respectively.

2 https://ckan.org/.
3 https://getdkan.org/.
4 http://dataportals.org/.
5 https://data.wu.ac.at/portalwatch/.
6 https://dev.socrata.com/.
7 http://cas.lod-cloud.net/.
8 https://huggingface.co/t5-base.
9 https://github.com/facebookresearch/DPR.

10 https://github.com/stanford-futuredata/ColBERT.
11 https://github.com/facebookresearch/faiss.

https://ckan.org/
https://getdkan.org/
http://dataportals.org/
https://data.wu.ac.at/portalwatch/
https://dev.socrata.com/
http://cas.lod-cloud.net/
https://huggingface.co/t5-base
https://github.com/facebookresearch/DPR
https://github.com/stanford-futuredata/ColBERT
https://github.com/facebookresearch/faiss
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4.4 Experimental Settings

We evaluated with the following settings of our approach.
For normal retrieval, we directly reused the 10 top-ranked RDF datasets

outputted by each of the four sparse retrieval models provided by ACORDAR:
TF-IDF, BM25, LMD, and FSDM. TF-IDF (Term Frequency—Inverse Docu-
ment Frequency) is a weighting scheme giving large weights to locally frequent
(i.e., within the current dataset) but globally infrequent (across all datasets)
words; based on TF-IDF vector representations, datasets are ranked by their
cosine similarity with the query. BM25 is a ranking function that combines
term frequency, inverse document frequency, and document length normaliza-
tion. LMD (Language Model with Dirichlet Smoothing) is a retrieval model that
estimates the probability of generating a query given a document, incorporat-
ing smoothing techniques to handle unseen terms. FSDM (Fielded Sequential
Dependence Model) is a retrieval model for structured document retrieval which
considers term dependencies and optimizes document field weights.

For RDF triple extraction in compact document representation, we compared
Illusnip and PCSG.

For the dense ranking model in re-ranking, we compared DPR and ColBERT.
For tuning the dense re-ranking model, we compared coarse-tuning based

on distant supervision (denoted by ds), coarse-tuning based on self-training
(denoted by st), and normal fine-tuning (denoted by ft).

4.5 Evaluation Metrics

Following [18], we used Normalized Discounted Cumulative Gain (NDCG)
and Mean Average Precision (MAP). We calculated and reported the mean
NDCG@5, NDCG@10, MAP@5, and MAP@10 scores over all the queries.

4.6 Evaluation Results

In the presented results tables, we highlight the best result in each setting in
bold, and underline the second best result.

Effectiveness of Re-Ranking. As shown in Table 1, re-ranking brings
improvements in all the settings, and the improvements in most settings are sta-
tistically significant. The best results are achieved with PCSG and ColBERT.
Compared with the original sparse retrieval model, this dense re-ranking model
raises NDCG@5 by 0.0218–0.0610 (4%–11%), NDCG@10 by 0.0088–0.0326 (1%–
6%), MAP@5 by 0.0175–0.0476 (5%–17%), and MAP@10 by 0.0132–0.0363
(3%–9%). In particular, by re-ranking the outputs of FSDM with this model,
we obtain the current state-of-the-art results on ACORDAR. The second best
results are mostly achieved with IlluSnip and ColBERT. These results demon-
strate the effectiveness of our dense re-ranking for RDF dataset search.
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Table 1. Effectiveness of Re-Ranking (∗ indicating a significant improvement after
re-ranking according to paired t-test under p < 0.05)

Retrieval Re-Ranking Tuning NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF before re-ranking - 0.5088 0.5452 0.2871 0.3976

Illusnip+DPR ds+st+ft 0.5579∗ 0.5720∗ 0.3295∗ 0.4319∗

Illusnip+ColBERT ds+st+ft 0.5610∗ 0.5749∗ 0.3329∗ 0.4339∗

PCSG+DPR ds+st+ft 0.5521∗ 0.5704∗ 0.3234∗ 0.4280∗

PCSG+ColBERT ds+st+ft 0.5659∗ 0.5753∗ 0.3347∗ 0.4339∗

BM25 before re-ranking - 0.5538 0.5877 0.3198 0.4358

Illusnip+DPR ds+st+ft 0.5888∗ 0.6082∗ 0.3481∗ 0.4592∗

Illusnip+ColBERT ds+st+ft 0.6028∗ 0.6136∗ 0.3553∗ 0.4623∗

PCSG+DPR ds+st+ft 0.5880∗ 0.6065∗ 0.3462∗ 0.4567∗

PCSG+ColBERT ds+st+ft 0.6079∗ 0.6173∗ 0.3625∗ 0.4680∗

LMD before re-ranking - 0.5465 0.5805 0.3266 0.4324

Illusnip+DPR ds+st+ft 0.5959∗ 0.6055∗ 0.3563∗ 0.4571∗

Illusnip+ColBERT ds+st+ft 0.5963∗ 0.6083∗ 0.3564∗ 0.4585∗

PCSG+DPR ds+st+ft 0.5908∗ 0.6003∗ 0.3498∗ 0.4509∗

PCSG+ColBERT ds+st+ft 0.6075∗ 0.6131∗ 0.3671∗ 0.4654∗

FSDM before re-ranking - 0.5932 0.6151 0.3592 0.4602

Illusnip+DPR ds+st+ft 0.6088 0.6204 0.3709 0.4713

Illusnip+ColBERT ds+st+ft 0.6121 0.6184 0.3677 0.4645

PCSG+DPR ds+st+ft 0.6061 0.6149 0.3655 0.4637

PCSG+ColBERT ds+st+ft 0.6150 0.6239 0.3767 0.4734

Effectiveness of Coarse-Tuning. For space reasons, Table 2 and Table 3 only
show the results obtained with ColBERT. The results with DPR are similar.

As shown in Table 2, compared with fine-tuning (ft), adding coarse-tuning
brings improvements in almost all the settings. In particular, such improvements
are not an effect of longer training since naively increasing the number of epochs
in the fine-tuning phase from 1 to 3 (ft3) only brings marginal differences.
In some settings, adding coarse-tuning based on distant supervision (ds+ft)
or self-training (st+ft) brings larger improvements than adding both of them
(ds+st+ft). However, the latter is more robust as it achieves the first or second
best result in most settings. Interestingly, for IlluSnip-based re-ranking models,
self-training (st+ft) generally brings larger improvements than distant supervi-
sion (ds+ft), whereas for PCSG-based re-ranking models, opposite results are
observed. These results demonstrate the effectiveness of our two coarse-tuning
methods which complement fine-tuning and also complement each other.

As shown in Table 3, coarse-tuning alone based on self-training without fine-
tuning (st) is generally comparable with fine-tuning (ft), which demonstrates
the quality of our augmented labeled data via self-training. However, there are
noticeable gaps between fine-tuning (ft) and coarse-tuning alone based on dis-
tant supervision without fine-tuning (ds), which shows difficulty in dense re-
ranking for RDF dataset search solved as a zero-shot learning task.
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Table 2. Effectiveness of Coarse-Tuning in Complementing Fine-Tuning

Retrieval Re-Ranking Tuning NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF Illusnip+ColBERT ft 0.5530 0.5696 0.3287 0.4307

ft3 0.5558 0.5703 0.3320 0.4320

ds+ft 0.5632 0.5754 0.3343 0.4343

st+ft 0.5625 0.5746 0.3368 0.4355

ds+st+ft 0.5610 0.5749 0.3329 0.4339

PCSG+ColBERT ft 0.5621 0.5738 0.3372 0.4356

ft3 0.5578 0.5716 0.3345 0.4336

ds+ft 0.5688 0.5784 0.3379 0.4368

st+ft 0.5566 0.5687 0.3294 0.4297

ds+st+ft 0.5659 0.5753 0.3347 0.4339

BM25 Illusnip+ColBERT ft 0.5976 0.6113 0.3522 0.4603

ft3 0.6027 0.6137 0.3581 0.4640

ds+ft 0.6022 0.6124 0.3544 0.4605

st+ft 0.6081 0.6163 0.3602 0.4658

ds+st+ft 0.6028 0.6136 0.3553 0.4623

PCSG+ColBERT ft 0.6045 0.6163 0.3602 0.4671

ft3 0.5961 0.6099 0.3534 0.4608

ds+ft 0.6103 0.6195 0.3636 0.4694

st+ft 0.6047 0.6154 0.3608 0.4672

ds+st+ft 0.6079 0.6173 0.3625 0.4680

LMD Illusnip+ColBERT ft 0.5918 0.6037 0.3514 0.4544

ft3 0.5978 0.6068 0.3574 0.4574

ds+ft 0.5989 0.6064 0.3582 0.4569

st+ft 0.6096 0.6121 0.3666 0.4637

ds+st+ft 0.5963 0.6083 0.3565 0.4585

PCSG+ColBERT ft 0.6029 0.6077 0.3596 0.4578

ft3 0.5933 0.6051 0.3562 0.4572

ds+ft 0.6067 0.6122 0.3656 0.4636

st+ft 0.6035 0.6104 0.3642 0.4625

ds+st+ft 0.6075 0.6131 0.3671 0.4654

FSDM Illusnip+ColBERT ft 0.5981 0.6119 0.3615 0.4608

ft3 0.6058 0.6187 0.3695 0.4673

ds+ft 0.6030 0.6134 0.3610 0.4592

st+ft 0.6090 0.6182 0.3704 0.4673

ds+st+ft 0.6121 0.6184 0.3677 0.4645

PCSG+ColBERT ft 0.6152 0.6195 0.3766 0.4695

ft3 0.6064 0.6181 0.3690 0.4662

ds+ft 0.6133 0.6223 0.3732 0.4703

st+ft 0.6128 0.6224 0.3755 0.4725

ds+st+ft 0.6150 0.6239 0.3767 0.4734
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Table 3. Effectiveness of Coarse-Tuning in Replacing Fine-Tuning

Retrieval Re-Ranking Tuning NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF Illusnip+ColBERT ft 0.5530 0.5696 0.3287 0.4307

ds 0.4928 0.5344 0.2757 0.3878

st 0.5589 0.5708 0.3276 0.4284

PCSG+ColBERT ft 0.5621 0.5738 0.3372 0.4356

ds 0.5095 0.5416 0.2844 0.3937

st 0.5538 0.5680 0.3209 0.4236

BM25 Illusnip+ColBERT ft 0.5976 0.6113 0.3522 0.4603

ds 0.5376 0.5752 0.3031 0.4211

st 0.5998 0.6108 0.3517 0.4597

PCSG+ColBERT ft 0.6045 0.6163 0.3602 0.4671

ds 0.5495 0.5849 0.3087 0.4275

st 0.5948 0.6115 0.3484 0.4594

LMD Illusnip+ColBERT ft 0.5918 0.6037 0.3514 0.4544

ds 0.5332 0.5692 0.2993 0.4115

st 0.6001 0.6072 0.3551 0.4552

PCSG+ColBERT ft 0.6029 0.6077 0.3596 0.4578

ds 0.5477 0.5805 0.3128 0.4243

st 0.5980 0.6087 0.3541 0.4560

FSDM Illusnip+ColBERT ft 0.5981 0.6119 0.3615 0.4608

ds 0.5380 0.5807 0.3103 0.4221

st 0.6033 0.6168 0.3667 0.4645

PCSG+ColBERT ft 0.6152 0.6195 0.3766 0.4695

ds 0.5505 0.5878 0.3158 0.4269

st 0.6079 0.6212 0.3666 0.4670

Table 4. Comparison between Triple Extraction Methods

Retrieval Re-Ranking NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF Illusnip+∗ 0.5594 0.5734 0.3312 0.4329

PCSG+∗ 0.5590 0.5729 0.3290 0.4309

BM25 Illusnip+∗ 0.5958 0.6109 0.3517 0.4608

PCSG+∗ 0.5979 0.6119 0.3543 0.4624

LMD Illusnip+∗ 0.5961 0.6069 0.3564 0.4578

PCSG+∗ 0.5992 0.6067 0.3585 0.4582

FSDM Illusnip+∗ 0.6105 0.6194 0.3693 0.4679

PCSG+∗ 0.6106 0.6194 0.3711 0.4686
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Comparison Between Triple Extraction Methods. Table 4 aggregates the
results in Table 1 by IlluSnip and PCSG. There is no clear winner between them.
In fact, according to Table 1, IlluSnip outperforms PCSG when accompanying
DPR, whereas opposite results are observed when accompanying ColBERT, sug-
gesting that extracting representative RDF triples in the context of dataset
search deserves to be further studied in the future.

Table 5. Comparison between Dense Ranking Models

Retrieval Re-Ranking NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF ∗+DPR 0.5550 0.5712 0.3264 0.4299

∗+ColBERT 0.5659 0.5753 0.3347 0.4339

BM25 ∗+DPR 0.5884 0.6074 0.3471 0.4580

∗+ColBERT 0.6053 0.6154 0.3589 0.4652

LMD ∗+DPR 0.5934 0.6029 0.3531 0.4540

∗+ColBERT 0.6019 0.6107 0.3618 0.4620

FSDM ∗+DPR 0.6074 0.6177 0.3682 0.4675

∗+ColBERT 0.6136 0.6211 0.3722 0.4690

Table 6. An Example of Top-Ranked RDF Datasets Before and After Re-Ranking
(bold: highly relevant; underlined: partially relevant)

Keyword Query: nitrogen reduction plan in MaryLand

Top-Ranked RDF Datasets by TF-IDF Re-Ranked by PCSG+ColBERT

1 [ID-46561] Plan Review [ID-42421] Percent of required nitrogen reduction achieved: Line Chart

2 [ID-11683] Plan Review [ID-41757] Chesapeake Bay Pollution Loads - Nitrogen

3 [ID-86273] January Water Reduction Chart [ID-03531] Chesapeake Bay Pollution Loads - Nitrogen

4 [ID-08199] Class Size Reduction Projects [ID-86273] January Water Reduction Chart

5 [ID-03531] Chesapeake Bay Pollution Loads - Nitrogen [ID-40742] Watershed Contaminant Reduction Index

6 [ID-41757] Chesapeake Bay Pollution Loads - Nitrogen [ID-08199] Class Size Reduction Projects

7 [ID-07248] 2019 NYC Open Data Plan: Removed Datasets [ID-79232] Open Publishing Plan Dataset

8 [ID-79232] Open Publishing Plan Dataset [ID-46561] Plan Review

9 [ID-40742] Watershed Contaminant Reduction Index [ID-11683] Plan Review

10 [ID-42421] Percent of required nitrogen reduction achieved: Line Chart [ID-07248] 2019 NYC Open Data Plan: Removed Datasets

Comparison Between Dense Ranking Models. Table 5 aggregates the
results in Table 1 by DPR and ColBERT. ColBERT consistently outperforms
DPR in all the settings, showing its relative suitability for RDF dataset search.

4.7 Case Study

Table 6 illustrates and compares the top-ranked RDF datasets before and after
re-ranking for the keyword query “nitrogen reduction plan in MaryLand” which
is sampled from our experiments. Before re-ranking, the four top-ranked datasets
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retrieved by a sparse model (i.e., TF-IDF) are actually irrelevant to the query,
although in their metadata, the query keyword “plan” or “reduction” has a
misleadingly very high lexical frequency. After re-ranking by our dense model
(i.e., PCSG+ColBERT), these datasets fall noticeably, while the three relevant
datasets rise to the top. It is expected since they exhibit better semantic match-
ing with the query, which is satisfyingly captured by the dense model.

5 Related Work

5.1 Dataset Search

Researchers have explored various principles and methods for dataset search [5].
For example, Koesten et al. [16] studied the user behavior of seeking structured
data on the Web, based on interviews with participants and analyses of search
logs. Google Dataset Search [3] is a dataset search engine providing keyword
search over reconciled metadata of datasets discovered on the Web.

The Semantic Web community is interested in RDF dataset search, and has
developed several prototype systems. LODAtlas [24] allows users to search for
RDF datasets and browse a retrieved dataset through a summary visualization.
CKGSE [30] supports full-text search over RDF datasets and presents extracted
data snippets and summaries. All these systems employ a sparse retrieval model
such as BM25. Moreover, Lin et al. [18] constructed the ACORDAR test collec-
tion for RDF dataset search and evaluated a set of retrieval methods—all based
on sparse models. By contrast, our work is distinguished by studying dense rank-
ing models for RDF dataset search and addressing the encountered challenges.

5.2 Dense Ranking

Benefiting from the progress of pre-trained language models like BERT [10],
dense ranking models have exhibited higher accuracy than sparse models in
document retrieval [12,14]. However, one factor that restricts the application
of dense models to boarder tasks is their limited input length of 512 tokens.
ANCE [31] addressed it by splitting a document into segments and then pool-
ing segment-level scores, where the semantic dependency among segments was
ignored. SeDR [7] used segment interaction to capture document-level repre-
sentations, but only extended the maximum input length to 2,048 tokens. This
capacity still cannot fit the possibly large size of an RDF dataset. Differently,
we addressed this challenge by extracting a subset of representative RDF triples.

Another factor affecting the performance of dense models is the availabil-
ity of labeled data for training. Indeed, as reported in [12], accuracy dropped
largely after reducing training samples from 59k to 1k. To alleviate this chal-
lenge, [11] fine-tuned on a large set of out-of-domain labeled data such as MS
MARCO [23], and then transferred the model to the target domain. However,
existing labeled data is mainly for document retrieval which differs greatly
from RDF dataset search, and our preliminary experiments have confirmed
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this concern. Therefore, we chose a different direction partially inspired by self-
training [21], i.e., we adopted a coarse-to-fine tuning strategy and devised two
methods for generating in-domain (i.e., task-specific) labeled data for coarse tun-
ing.

6 Conclusion and Future Work

Our exploration of applying dense ranking models to RDF dataset search has
brought an improvement of up to 11% in NDCG@5 and 17% in MAP@5 com-
pared with conventional sparse retrieval, considerably pushing the state of the
art on the ACORDAR test collection. It represents an encouraging start to con-
nect the task of RDF dataset search with recent advances in pre-trained language
models and dense text retrieval. Our empirical findings are expected to expand
the understanding of dense dataset search as a promising research pathway, and
our code and generated labeled data are shared to facilitate future studies.

As for future work, we identify the following three research directions. First,
for compact document representation, it remains unknown whether our selected
IlluSnip or PCSG is most suitable for sampling RDF data in the context of
dataset search. There are other snippet extraction and data summarization
methods [4,9,20,27,29] which deserve to be investigated, and a new specialized
method may be more helpful. Besides, beyond simple concatenation, a better
way of verbalizing RDF data into a document may also be helpful. Second,
contrastive learning is known to be useful for enhancing dense ranking mod-
els [31]. However, to boost training, it relies on high-quality (i.e., hard) negative
samples [32]. Their generation in the scenario of dataset search is still an open
problem. Third, we plan to extend our approach to a more general setting of
dataset search going beyond RDF datasets. One major challenge to be overcome
is how to encode different formats of data in a universal way. A possible solution
is to convert all types of data into graphs [1].

Supplemental Material Statement: Source code for all the dense re-ranking mod-
els, their outputs, and all the generated labeled data are available from GitHub
at https://github.com/nju-websoft/DR2.
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